Leaf mesophyll conductance and leaf hydraulic conductance: an introduction to their measurement and coordination.

نویسندگان

  • Jaume Flexas
  • Christine Scoffoni
  • Jorge Gago
  • Lawren Sack
چکیده

Two highly contrasting variables summarizing the efficiency of transport of materials within the leaf are recognized as playing central roles in determining gas exchange and plant performance. This paper summarizes current approaches for the measurement of mesophyll conductance to CO2 (g m) and leaf hydraulic conductance (K leaf) and addresses the physiological integration of these parameters. First, the most common methods to determine g m and K leaf are summarized. Next, novel data compilation is analysed, which indicates that, across diverse species, g m is strongly linked with gas exchange parameters such as net CO2 assimilation (A area) and stomatal conductance (g s), and with K leaf, independently of leaf vein length per leaf area. Based on their parallel responses to a number of environmental variables, this review proposes that g m is linked to the outside-xylem but not to the xylem component of K leaf. Further, a mechanistic hypothesis is proposed to explain the interactions among all these and other physiological parameters. Finally, the possibility of estimating g m based on this hypothesis was tested using a regression analysis and a neurofuzzy logic approach. These approaches enabled the estimation of g m of given species from K leaf and leaf mass per area, providing a higher predictive power than from either parameter alone. The possibility of estimating g m from measured K leaf or vice-versa would result in a rapid increase in available data. Studies in which g m, K leaf, and leaf mass per area are simultaneously determined are needed in order to confirm and strengthen predictive and explanatory models for these parameters and importantly improve resolution of the integrated hydraulic-stomatal-photosynthetic system.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Leaf shrinkage with dehydration: coordination with hydraulic vulnerability and drought tolerance.

Leaf shrinkage with dehydration has attracted attention for over 100 years, especially as it becomes visibly extreme during drought. However, little has been known of its correlation with physiology. Computer simulations of the leaf hydraulic system showed that a reduction of hydraulic conductance of the mesophyll pathways outside the xylem would cause a strong decline of leaf hydraulic conduct...

متن کامل

Leaf Shrinkage with Dehydration: Coordination with Hydraulic Vulnerability and Drought Tolerance1[C][W][OPEN]

Leaf shrinkage with dehydration has attracted attention for over 100 years, especially as it becomes visibly extreme during drought. However, little has been known of its correlation with physiology. Computer simulations of the leaf hydraulic system showed that a reduction of hydraulic conductance of the mesophyll pathways outside the xylem would cause a strong decline of leaf hydraulic conduct...

متن کامل

Leaf Hydraulic Conductance for a Tank Bromeliad: Axial and Radial Pathways for Moving and Conserving Water

Epiphytic plants in the Bromeliaceae known as tank bromeliads essentially lack stems and absorptive roots and instead take up water from reservoirs formed by their overlapping leaf bases. For such plants, leaf hydraulic conductance is plant hydraulic conductance. Their simple strap-shaped leaves and parallel venation make them suitable for modeling leaf hydraulic conductance based on vasculatur...

متن کامل

The role of plasma membrane aquaporins in regulating the bundle sheath-mesophyll continuum and leaf hydraulics.

Our understanding of the cellular role of aquaporins (AQPs) in the regulation of whole-plant hydraulics, in general, and extravascular, radial hydraulic conductance in leaves (K(leaf)), in particular, is still fairly limited. We hypothesized that the AQPs of the vascular bundle sheath (BS) cells regulate K(leaf). To examine this hypothesis, AQP genes were silenced using artificial microRNAs tha...

متن کامل

Spatio-temporal decoupling of stomatal and mesophyll conductance induced by vein cutting in leaves of Helianthus annuus

Reduction of hydraulic conductance to the canopy has been shown to result in stomatal responses to limit transpiration. To test for similar responses to perturbations of the hydraulic network in leaves, we simultaneously measured leaf gas exchange with spatially explicit chlorophyll-a fluorescence and leaf temperature to examine the effects of cutting a primary leaf vein in Helianthus annuus. W...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of experimental botany

دوره 64 13  شماره 

صفحات  -

تاریخ انتشار 2013